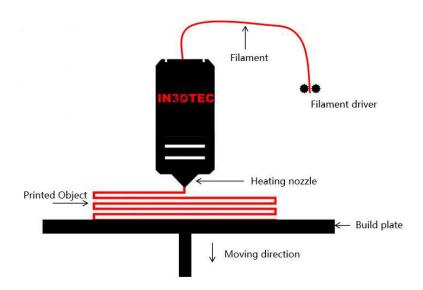
Handbook

3D Printing

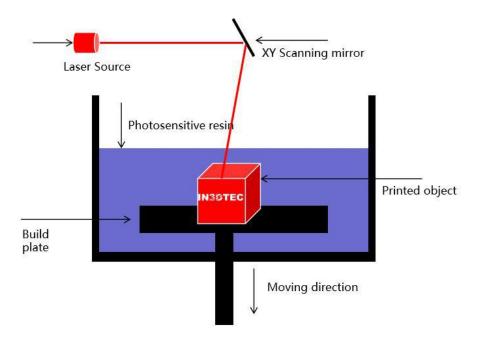

For beginners and professionals

Contents

1 >> Overview of 3D Printing technologie	es .
1.1 Fused deposition modeling	Page 3
1.2 Stereolithography	Page 4
1.3 Selective laser sintering	Page 5
1.4 Multi Jet Fusion	Page 6
1.5 Direct Metal Laser Sintering	Page 7
2 >> Overview of 3D Printing materials	
2.1 3D Printing materials & material Data	sheetsPage 8-9
2.2 Mecha <mark>nic</mark> al & chemical resistance	Page10-14
2.3 Available surface finishes	Page 15
2.4 Tolerance & Roughness	Page 15
2.5 Functional materials	Page 16
3 >> Design Tips	
3.1 File preparation	Page 17
3.2 Common errors of STL file	Page 18-19
3.3 Minimum wall thickness、Wall Gap、	Assemble gapPage 20-21
3.4 More tips	Page 22
4 >> Methods to save the 3D printing cos	tPage 23-24
5 >> Ahout IN3DTFC	Page 25-27

1 >> Overview of 3d printing technologies

1.1 Fused deposition modeling (FDM)



The FDM process uses a digital design (Gcode) that is uploaded to the 3D printer. The filaments are melted and fed onto the build plate, as the nozzle moves across the plate, the plastic cools and becomes solid, forming a hard bond with the previous layer, layer by layer until the object is finished.

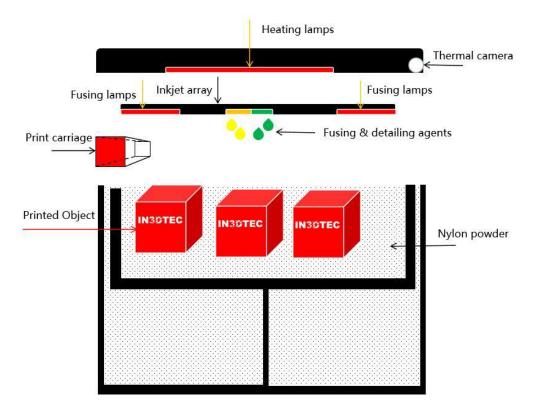
Jigs & fixtures
PA + Carbon fiber
FDM

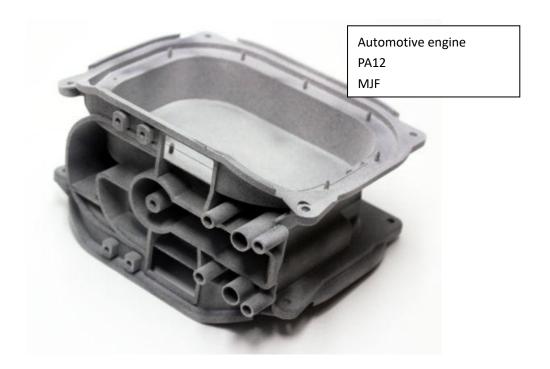
1.2 Stereolithography (SLA)

The SLA 3D Printers begin drawing the layers of the support structures, followed by the object itself, with an ultraviolet laser aimed onto the surface of a liquid photo-polymer resin. After a layer is imaged on the resin surface, the build platform shifts down and a re-coating bar moves across the platform to apply the next layer of resin. The process is repeated layer by layer until the object is complete.

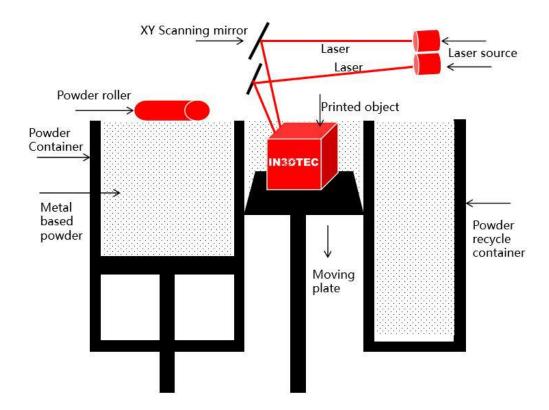
Valve Clear resin SLA

1.3 Selective Laser Sintering (SLS)


The SLS machine begins sintering each layer of part geometry into a heated bed of nylon-based powder. After each layer is fused, a roller moves across the bed to distribute the next layer of powder. The process is repeated layer by layer until the build is complete.

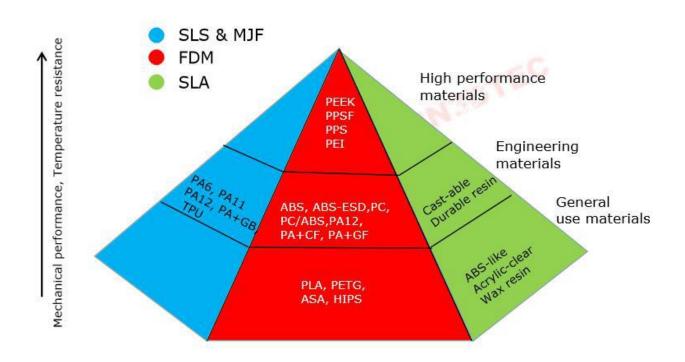

IN3DTEC TECHNOLOGY CO., LTD. 3D Printing | CNC Machining | Vacuum Casting | Injection Molding

Digital manufacturing services for prototyping & on-demand production info@in3dtec.com; www.in3dtec.com


1.4 Multi Jet Fusion (MJF)

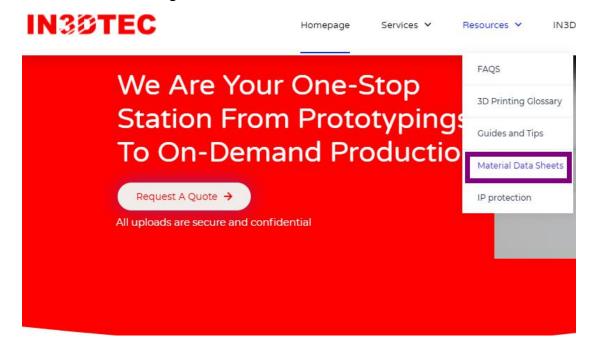
Multi Jet Fusion uses an inkjet array to selectively apply fusing and detailing agents across a bed of nylon powder, which are then fused by heating elements into a solid layer. After each layer, powder is distributed on top of the bed and the process repeats until the parts is complete.

IN3DTEC TECHNOLOGY CO., LTD. 3D Printing | CNC Machining | Vacuum Casting | Injection Molding Digital manufacturing services for prototyping & on-demand production info@in3dtec.com; www.in3dtec.com


The DMLS machine begins sintering each layer-first the support structures to the base plate, then the part itself, with a laser aimed onto a bed of metallic powder. After a cross-section layer or powder is micro-welded, the build plate shifts down and a recoater blade moves across the platform to deposit the next layer of powder into an inert build chamber. The process is repeated layer by layer until the part is complete.

IN3DTEC TECHNOLOGY CO., LTD. 3D Printing | CNC Machining | Vacuum Casting | Injection Molding Digital manufacturing services for prototyping & on-demand production info@in3dtec.com; www.in3dtec.com

2 >> Overview of 3D Printing materials & material data sheets


2.1 3D printing materials

Parameter	FDM	SLA	SLS	MJF	SLM/DMLS
Printing	Extrusion of	UV curing	Laser	Inkjet to	Laser Melting
principle	melted		Sintering	selectively	
	filament			apply fusing	
				and agents	
Layer height	50-200µm	25-50µm	32-50µm	50-100µm	50-100µm
Supported	PLA, ABS, ASA,	ABS, Clear	PA12,	PA11, PA12,	Aluminum,
Materials	PC, PC/ABS,PC,	resin, Durable	PA12+GF, TPU	PA+GF	Stainless
	PA+CF, PPSF,	resin, Wax,			steel, Ti64,
	PEI, PEEK	Cast-able			18Ni300
		resin			
Minimum	1.0mm	0.5mm	0.8mm	0.8mm	0.8mm
Wall					
thickness					
Achievable	Visible lines on	Very smooth	Smooth	Smooth	Smooth
quality	the surface				

Please click **HERE** to view the materials data-sheets

Or visit our website to get it.

2.2 Mechanical & chemical resistance

FDM Materials-1

FDIVI Materials-1					
Properties	ABS	ASA	PETG	PC	PC/ABS
Young's modulus (MPa)	2147	2379	1523	2048	1832
Tensile strength (MPa)	33.6	43.8	31.8	62.7	39.9
Elongation at break (%)	2.7	6.8	4.4	12.2	4.2
Bending modulus (MPa)	1400	3208	N/A	2045	2081
Bending strength (MPa)	59	73.1	55.1	94.1	66.3
Charpy impact strength (kJ/m2)	12.6	27.5	2.4	25.1	25.8
Aceton	dissolve	dissolve	Serious impact	Serious impact	Serious impact
Water absorption, Equilibrium, 23°C	No impact	No impact	No impact	No impact	No impact
Sodium Hypochlorite 15% (Chlorine Bleach)	Slight impact	N/A	N/A	No impact	No impact
Oil	Slight impact	N/A	N/A	No impact	No impact
Alcohol, Aliphatic	N/A	No impact	No impact	Slight impact	No impact
Weathering resistance	Slight impact	No impact	N/A	No impact	Slight impact
Hot water	Serious impact	Slight Impact	Slight impact	Slight impact	Slight impact

FDM Materials-2

1 DIVI IVIALEITAIS-2					
Properties	PA+CF	PEI 1010	PEI 9085	PPSF	PEEK
Young's modulus (MPa)	7453	2750	2500	2100	3738
Tensile strength (MPa)	105	68	65	55	98
Elongation at break (%)	3	3.3	5.8	3	9.1
Bending modulus (MPa)	8339	3197	2550	2200	3612
Bending strength (MPa)	169	120	110	110	147
Charpy impact strength (kJ/m2)	13.4	30	N/A	N/A	N/A
Acetone	No impact	Serious impact	Serious impact	N/A	No impact
Water absorption, Equilibrium, 23°C	No impact	No impact	No impact	No impact	No impact
Sodium Hypochlorite 15% (Chlorine Bleach)	No impact	No impact	No impact	No impact	No impact
Oil	No impact	No impact	No impact	No impact	No impact
Alcohol, Aliphatic	No impact	No impact	No impact	No impact	No impact
Weathering resistance	No impact	No impact	No impact	No impact	No impact
Hot water	Slight impact	No impact	No impact	No impact	No impact

SLA Materials

SLA Materials					
Properties	ABS-like	Acrylic-Clear Resin	Somos-Tauru s	Somos-128	Somos-800 0
Young's modulus (MPa)	2500	2860	2310	2946	2370
Tensile strength (MPa)	40	55	46.9	56.8	47.2
Elongation at break (%)	4	4	4	11	8
Bending modulus (MPa)	2300	2410	2054	2654	2222
Bending strength (MPa)	70	82	73.8	80	66.8
Charpy impact strength (kJ/m2)	10.5	10.5	47.5	38.9	23
Acetone	Serious impact	Serious impact	Serious impact	Serious impact	Serious impact
Water absorption, Equilibrium, 23°C	Slight impact	Slight impact	Slight impact	Slight impact	Slight impact
Sodium Hypochlorite 15% (Chlorine Bleach)	Serious impact	Serious impact	Serious impact	Serious impact	Serious impact
Oil	Serious impact	Serious impact	Serious impact	Serious impact	Serious impact
Alcohol, Aliphatic	Serious impact	Serious impact	Serious impact	Serious impact	Serious impact
Weathering resistance	Serious impact	Serious impact	Serious impact	Serious impact	Serious impact
Recommended Max. use temperature	35°C	35°C	45°C	45°C	45°C

SLS materials

3L3 IIIateriais				
Properties	PA6	PA12	TPU	PA+GB
Young's modulus (MPa)	3200	1650	61	3200
Tensile strength (MPa)	74	48	18	51
Elongation at break (%)	4	4	276	9
Bending modulus (MPa)	2300	1500	86	2900
Bending strength (MPa)	99	N/A	6.2	70
Charpy impact strength (kJ/m2)	10.5	53	No break	35
Acetone	No impact	No impact	No impact	No impact
Water absorption, Equilibrium, 23°C	No impact	No impact	Slight impact	No impact
Sodium Hypochlorite 15% (Chlorine Bleach)	N/A	No impact	No impact	No impact
Oil	Slight impact	No impact	Slight impact	No impact
Alcohol, Aliphatic	N/A	No impact	No impact	No impact
Weathering resistance	No impact	No impact	N/A	No impact
Hot water	Slight impact	Slight Impact	Slight impact	Slight impact

MJF Materials

PA11	PA12	PA+GF
1800	1800	2500
52	48	30
60	20	10
1700	1800	2700
65	70	65
N/A	N/A	N/A
No impact	No impact	No impact
No impact	No impact	No impact
No impact	No impact	No impact
No impact	No impact	No impact
No impact	No impact	No impact
No impact	No impact	No impact
Slight impact	Slight impact	Slight impact
	1800 52 60 1700 65 N/A No impact No impact No impact No impact No impact	1800 1800 52 48 60 20 1700 1800 65 70 N/A N/A No impact No impact No impact No impact

For Metal printed materials, please contact our team directly.

2.3 Available surface finishes

Technology	Initial colors	Polish & Coloring	Coloring
FDM	Multiple	Sand-blasting, Sand-paper polish	Spray Painting, Plating
	colors		
SLS	White	Sand-blasting	Dyeing & Spray Painting
SLA	White, Clear,	Sand-paper polish	Spray painting, Plating
MJF	Grey, Black	Sand-blasting	Dyeing & Spray Painting
SLM, DMLS	Metal color	Sand-blasting, Electropolishing	An <mark>odizing, Sp</mark> ray Painting,
			Plating

2.4 Tolerance and roughness

Technology	Tolerancing (mm)	Smoothness/Roughness
FDM	Length within 100mm +/-	Visible lines on the surface,
1 /	0,25mm; length >100mm,	Ra24
	100*0.25%mm	
SLS	Length within 100mm +/-	Smooth, Ra7
	0,2mm; length >100mm,	
_ P 4 4 4	100*0.2%mm	
SLA	Length within 100mm +/-	Very smooth, Ra4.5
	0,1mm; length >100mm,	
	100*0.1%mm	
MJF	Length within 100mm +/-	Smooth, Ra7
	0,2mm; length >100mm,	
	100*0.2%mm	
SLM, DMLS	Length within 100mm +/-	Smooth, Ra7
	0,1mm; length >100mm,	
	100*0.1%mm	

2.5 Functional materials

High temperature resistance:

PEEK+CF(280°C), PEEK(260°C), PEI(180°C), PPSF(180°C), PA+GF(FDM, SLS, MJF)

Medical grade Materials:

ABS M30i(FDM), PEEK(FDM), PPSF(FDM), PA12(SLS & MJF), PA11(MJF), Ti64(SLM)

ESD Material:

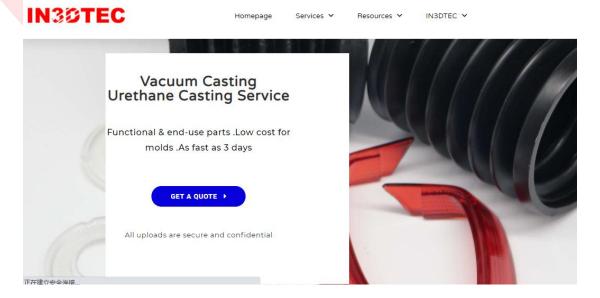
ESD-ABS

Flame retardant materials:

PC-FR(FDM), ULTEM 1010 & 9085(FDM), PEEK(FDM), PA12-FR(SLS), PPS(FDM)

Waterproof materials:

PETG(FDM), PC(FDM), PEEK(FDM), PA12


UV resistance:

ASA, PC, Nylons+CF, PEEK, PEI

Flexible materials:

TPU95A & 85A(FDM), TPU75A & 90A(SLS), TPU50A(SLA). For high-standard TPU, we recommend using our Vacuum Casting service, please click HERE to learn more.

Or visit our website to get more details.

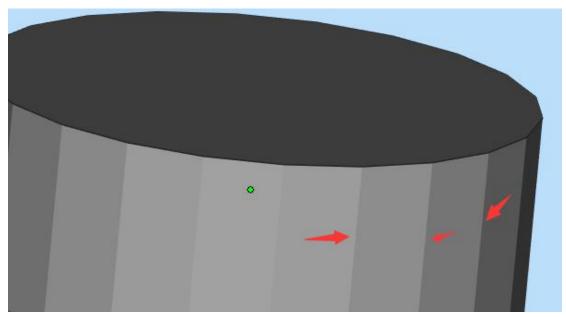
IN3DTEC TECHNOLOGY CO., LTD.

3 >> Design tips

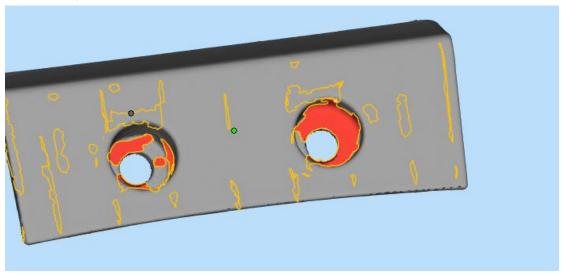
3.1 File preparation

Before sending a job to a 3D printer, the model to be printed needs to be tessellated. That means that its geometry needs to be converted into triangles, which are used by the printer to create layers. It is very important to pay attention to this step: if not done correctly, it can cause problems such as inaccuracy or slow processing.

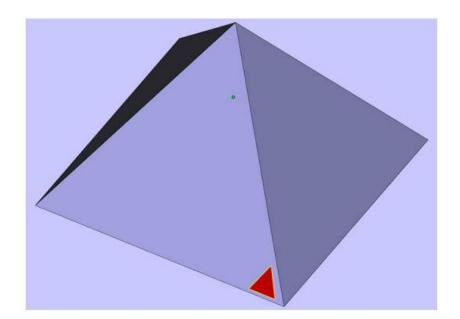
Standard formats in the additive manufacturing industry include 3MF (with more information about the model) and STL.

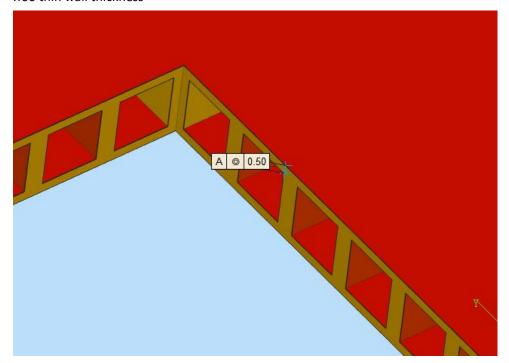

How to export the CAD file into STL? The following tips may help you,

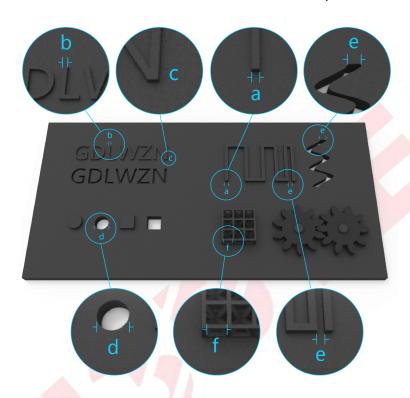
now to export the exp inc into 312: The following tips may help you,			
.Select IPro > Print > 3D Print Preview .Select Options and choose desired			
resolution and click OK .Within the preview window, select Save			
Copy .Save As type to STL File (*.stl)			
.F <mark>ile .E</mark> xport .Save as STL .Save			
.File .Part properties .Rendering .Facet surface smoothing .Save file as STL			
. File-Export -Model . Set type to STL .Set chord height to 0. The field will			
be replaced by minimum acceptable value .Set Angle Control to 1 .Click			
OK			
.File .Save as STL			
.File .Save as STL .Options .Resolution(fine) .OK			
.File .Save as STL			
.File .External .Save as STL .Select Binary .Select the model .Input			
0.001mm as the Max Deviation Distance(Maximum Tolerance)			
.File .Save as .Select STL . Options - Conversion tolerance as			
0.0254mm .Surface plane angle as 45.00			
.File .Save as STL			
.File .Export .Rapid Prototyping . Binary . Triangle tolerance as			
0.0025 .Adjacency Tolerance as 0.12 .Auto Normal Gen as ON .Normal			
Display as off .Triangle display as ON			


Notes: In order to build on additive manufacturing technologies, STL files must contain completely closed (watertight) polygon mesh objects.

3.2 Common errors of STL


. Bad resolution lead to visible lines on the surface


.Broken/not joined surface


. Holes on the part

.Too thin wall thickness

3.3 Minimum wall thickness、hole diameter、Wall Gap、Font、Assemble gap

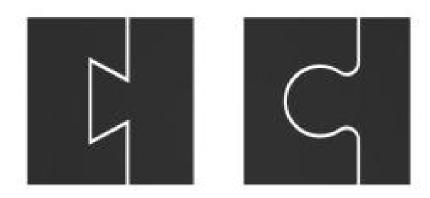
Only for FDM

Position	Tips
а	Minimum wall thickness 1.2mm
b	Fonts minimum thickness 0.8mm
С	Fonts height or depth 0.8mm
d	Minimum hole diameter 1.5mm
e	Minimum Gap 0.8mm
f	Minimum Grid wall gap 5mm

For SLA, SLS, SLM

Position	Tips
а	Minimum wall thickness 0.5mm
b	Fonts minimum thickness 0.5mm
С	Fonts height or depth 0.5mm
d	Minimum hole diameter 0.8 mm
e	Minimum Gap 0.5mm
f	Minimum Grid wall gap 5mm

.Parts to be assembled


For SLA, SLS, SLM & MJF

Name	Image	Tips
Assemble gap		Minimum assembly gap:0.2mm
Thread		Minimum assembly gap:0.2mm Thread>=M2.5 Minimum thread distance: 0.45mm, Minimum thread height: 0.25mm
Gear		Minimum assembly gap: 0.2mm Minimum thread distance: 2mm Minimum thread height: 2mm

For FDM ones, please contact our team directly.

3.4 More tips:

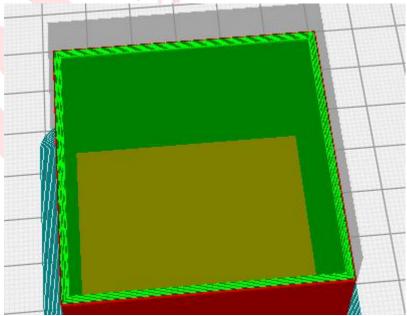
- 1. If one of the assembly parts is a 3D printed part and the other is a machined part or an injection molded part, the design should be based on the 0.2mm gap.
- 2. If both matching parts are 3D printed parts, please design according to the 0.2-0.3mm gap.
- 3. If your parts exceed our printing size, you can use a reasonable split structure for split printing. We provide you with two types of segmented structures, and the designed gap is also 0.2mm

>> Methods to save the 3D Printing cost

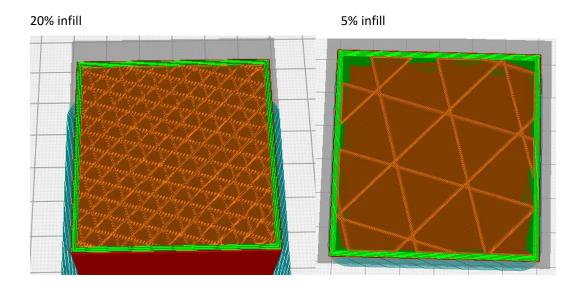
Compared with CNC, 3D printing is not sensitive to the complexity of the objects. For example, in IN3DTEC's China factory, one technician can control 15 to 20 devices at the same time. Therefore, the cost of 3D printing mainly depends on the weight of the part, So the most direct way to reduce costs is to make less weight of the objects, below are 4 free tips,

1. Choose the right material

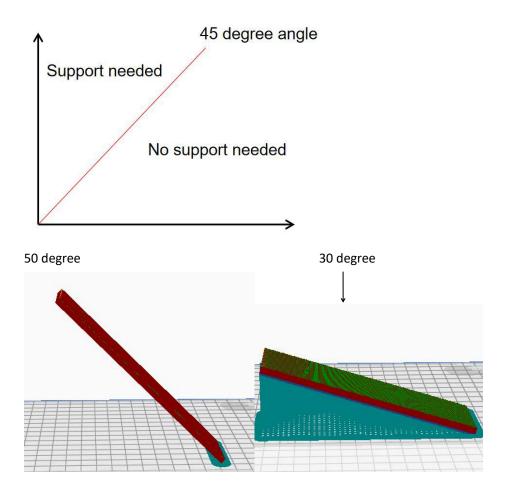
Plastics:


the cost from high to low following by PEEK>PEI1010=PPSF>PEI9085>PA+GF>PA+CF>PPS>PPA>PA6/66/12>ASA>PC>PC/ABS>ABS>PETG>PLA

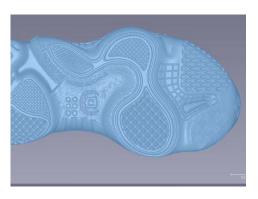
Metals:


Ti64>>18Ni300>Stainless>Aluminum

2. Hollow the part


Samples with low strength requirements can be hollowed

2. Reduce the infill percentage(mainly for FDM)


3. Avoid any structure needs much support

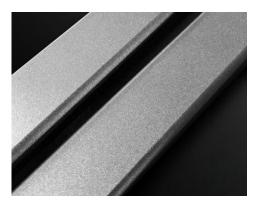
IN3DTEC TECHNOLOGY CO., LTD. 3D Printing | CNC Machining | Vacuum Casting | Injection Molding Digital manufacturing services for prototyping & on-demand production info@in3dtec.com; www.in3dtec.com

>> About IN3DTEC

Our services

3D Scanning & Reverse engineering>>

3D Printing Service>>


CNC Machining Service>>

Vacuum Casting Service>>

Injection Molding Service>>

Surface finishes Service>>

Notes:

For chemical and temperature resistance, we refer to the following links, thanks for their effort to making things easier.

https://omnexus.specialchem.com/polymer-properties/properties/hdt-0-46-mpa-67-psi#PE-PL https://www.curbellplastics.com/Research-Solutions/Technical-Resources/Technical-Resources/C hemical-Resistance-Chart

https://www.plasticsintl.com/chemical-resistance-chart

https://www.gehrplastics.com/wp-content/uploads/2019/07/GEHR-PEI-chemical-resistance.pdf https://www.coleparmer.com/chemical-resistance

Thank you very much for taking the time to read this manual, and we welcome your comments or suggestions.

Attention: The information contained in this document is for the exclusive use of intended addressee(s)/receivers only and is confidential information. If you have received this copy in error, please reply to the sender highlighting the error and destroy the original message and all copies immediately. Thanks.

IN3STEC

Bring your concept into reality

IN3DTEC was established in 2014 by a professional team in Shanghai with branches in Hongkong, Suzhou, Shenzhen. We provide a full spectrum of technologies including 3D Scanning, 3D Printing, CNC Machining, Vacuum Casting, Injection Molding and more manufacturing services, which enable us to become a one-stop station from prototyping to on-demand production.

In order to meet different markets needs, we expand our offerings to service Aerospace,

In order to meet different markets needs, we expand our offerings to service Aerospace, Automotive, Education, Electricals, Jigs & Fixtures, Medical, Oil & Gas, Transportation