

PRODEC® Type 316, Type 316L

A special quality of standard Type 316 UNS S31600, 316L UNS S31603 with composition and processing for enhanced machinability.

Description

PRODEC® 316/316L is an improved version of standard Type 316/316L. With advanced ladle metallurgy techniques, the steel is processed for improved machinability and outstanding uniformity. PRODEC 316/316L offers faster machining speeds, longer tool life, improved part quality, and lower total cost of machined parts.

PRODEC 316/316L is nonmagnetic in the annealed condition but may become slightly magnetic as a result of welding.

Dual Certification

It is common for PRODEC 316L to be dual certified as PRODEC 316 and PRODEC 316L when the material meets both the lower carbon limit of Type 316L and the slightly higher strengths of Type 316. The producer of the steel must certify the material as Type 316 if it is to be used as Type 316 instead of Type 316L.

Specifications

PRODEC 316/316L meets the same AMS, ASTM, ASME, QQS, and MIL-S specifications as standard Type 316/316L.

Product Forms Available

Plate Bar

Corrosion Resistance

PRODEC 316/316L provides improved resistance to pitting and crevice corrosion in environments containing chlorides and other halides.

Although improvements in machinability in the past have been associated with reduced corrosion resistance, PRODEC 316/316L has been shown to have corrosion resistance within the range typically expected of Type 316/316L stainless steel.

Machinability

PRODEC 316/316L is melted to a closely controlled chemistry and ladle treated to achieve control of the composition, amount, size, shape, and distribution of the nonmetallic inclusions (sulfides and oxides) normally occurring within a standard stainless steel. These inclusions provide for chip breaking and for reduced wear of carbide tooling at high machining speeds. PRODEC 316/ 316L permits higher machining speeds, longer tool life, and superior part quality with reduced total cost for finished parts.

The following tables give some speeds and feeds obtained in tests for PRODEC 316/316L, providing guidelines for possible adaptation to particular machining programs. The data provided are based on achieving tool lives of 15 minutes for cemented carbides and 60 minutes for high speed steel tools.

Turning

Table 1

		C	utting sp	eed, sfr	n
Feed (in/rev)	Cutting depth (in)	Ceme C7	nted car C6	bides C5	High speed steel
< 0.012	0.08	780	620	—	95
0.012-0.020	0.08-0.20	—	560	460	80
0.020-0.040	0.20-0.40	—	295	260	50

Threading

Table 2

Tool	Speed (sfm)
Cemented Carbide (C6-C5)	295-425
High Speed Steel	50-65

Reaming

Ream	Cutting S				
diameter (in)	Cemented carbide	High speed steel	Feed (in/rev)		
< 0.40	165	33-50	0.004-0.008		
0.40-0.80	165	33-50	0.012		
> 0.80	165	33-50	0.012-0.016		
Coolant/lubricant: emulsion or cutting oil					

Cut Off		Table 4
Tool	Speed (sfm)	Feed (in/rev)
Cemented Carbide (C5)	295-460	0.003-0.008
High Speed Steel	100	0.002

Drilling — High Speed Steel Twist Drills

Drill diameter	Speed		Feed
(in)	rpm	fm	(in/rev)
0.04	3200-3800	33-38	0.002
0.12	1600-1800	50-57	0.004
0.20	1080-1270	57-66	0.008
0.40	540-640	57-66	0.012
0.60	360-430	57-66	0.014
0.80	270-320	57-66	0.016
1.20	180-220	57-66	0.018
Notos:			

Notes

1. Cutting Fluid: Ample flow of 10% emulsion coolant.

2. With short NC drills, feed can be increased about 40%.

3. When hole depth exceeds 4x diameter, clear chips from hole.

4. With TiN-Coated HSS drills, speed can be increased 10%. 5. For rotating drill and fixed workpiece, as in drilling a hole in

a plate, the maximum speed should not exceed 50 sfm.

Drilling — Indexable insert drills, cemented carbides Table 6

Drill diameter Speed		Feed	Type of carbide		
(in)	sfm	(in/rev)	Center	Periphery	
0.80	655-820	0.004	C6	C7	
1.20	655-820	0.005	C6	C7	
1.60	655-820	0.006	C6	C7	
2.00	655-820	0.008	C6	C7	
Notes:					

Cutting Fluid—Pressure: >44 psi; Amount: > 6.5 gal/min Cutting data for indexable insert drills are highly dependent on the make of drill; the manufacturer's recommendations should be considered.

Heat Treatment Annealing

Table 3

Table 5

PRODEC 316/316L should be heated to 1900°F minimum, then water quenched or rapidly cooled by other means.

Hardening

*0.375 inch plate

PRODEC 316/316L cannot be hardened by heat treatment. However, PRODEC 316/316L can be hardened by cold working.

Mechanical Properties at Room Temperature Table 7 **ASTM** Typical* 316 **316L** Ultimate Tensile Strength, ksi 85 75 min 70 min 0.2% Offset Yield Strength, ksi 44 30 min 25 min Elongation in 2 inches, % 56 40 min 40 min Reduction in Area, % 69 81 Hardness, Rockwell B 95 max 95 max

Chemical Composition, wt. pct. Table 8

	PRODEC 316	PRODEC 316L
Carbon	0.08 max	0.030 max
Manganese	2.00 max	2.00 max
Phosphorus	0.045 max	0.045 max
Sulfur	0.03 max	0.030 max
Silicon	0.75 max	0.75 max
Chromium	16.0-18.0	16.0-18.0
Nickel	10.0-14.0	10.0-14.0
Molybdenum	2.0-3.0	2.0-3.0
Nitrogen*	0.10 max	0.10 max
*flat-rolled products o	nly	

Physical Properties	Table 9
Density, lb/in³	0.285
Modulus of Elasticity, psi	29 x 10 ⁶
Coefficient of Thermal Expansion, 68-212°F, /°F	8.9 x 10⁻ ⁶
Thermal Conductivity, Btu/ft hr°F	8.7
Heat Capacity, Btu/lb°F	0.12
Electrical Resistivity, Ω -inch	27.6 x 10 ⁻⁶

Milling

		Cemented carbide	High speed steel		
Operation	Speed (sfm)	Feed (in/tooth)	Type of carbide	Speed (sfm)	Feed (in/tooth)
Face Milling	490-820	0.006-0.012	C7-C6	80-100	0.005-0.008
Side Milling	590-790	0.010-0.012	C7-C6	80-100	0.005-0.008
End Milling	490-720	0.004-0.008	C7-C6	80-100	0.001-0.006
End Milling	165-330	0.002-0.008	C5	_	_
(Solid cemented carbide)					

Corrosion Performance of Stainless Steels

Table 11 compares Type 316L (2.7 Mo) with other stainless steels in a variety of common corrosive environments. The table shows the lowest temperature at which the corrosion rate exceeds 5 mpy. All testing was done in accordance with the requirements of the Materials Technology Institute of the Chemical Process Industries (MTI).

Lowest Temperature (°F) at Which the Corrosion Rate Exceeds 5 mpy

Corrosion Environment	654 SMO®	254 SM0®	904L	Type 316L (2.7 Mo)	. Type 304	Outokumpu 2507	2205 Code Plus Two®	Outokumpu 2304
0.2% Hydrochloric Acid	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling
1% Hydrochloric Acid	203	158	122	86	86p	>Boiling	185	131
10% Sulfuric Acid	158	140	140	122		167	140	149
60% Sulfuric Acid	104	104	185	<54		<57	<59	<<55
96% Sulfuric Acid	86	68	95	113		86	77	59
85% Phosphoric Acid	194	230	248	203	176	203	194	203
10% Nitric Acid	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling	>Boiling
65% Nitric Acid	221	212	212	212	212	230	221	203
80% Acetic Acid	>Boiling	>Boiling	>Boiling	>Boiling	212p	>Boiling	>Boiling	>Boiling
50% Formic Acid	158	212	212p	104	≤50	194	194	59
50% Sodium Hydroxide	275	239	Boiling	194	185	230	194	203
83% Phosphoric Acid + 2% Hydrofluoric Acid	185	194	248	149	113	140	122	95
60% Nitric Acid + 2% Hydrochloric Acid	>140	140	>140	>140	>140	>140	>140	>140
50% Acetic Acid + 50% Acetic Anhydride	>Boiling	>Boiling	>Boiling	248	>Boiling	230	212	194
1% Hydrochloric Acid + 0.3% Ferric Chloride	>Boiling, p	203ps	140ps	77p	68p	203ps	113ps	68p
10% Sulfuric Acid + 2000ppm Cl ⁻ + N ₂	149	104	131	77		122	95	<55
10% Sulfuric Acid + 2000ppm Cl ⁻ + SO ₂	167	140	122	<<59 p		104	<59	<<50
WPA1, High Cl ⁻ Content	203	176	122	≤50	<<50	203	113	86
WPA2, High F ⁻ Content	176	140	95	≤50	<<50	167	140	95
ps = pitting can occur ps = pitting/crevice corrosion can occur	I							

WPA	P ₂ 0 ₅	CI	F	H ₂ SO ₄	Fe ₂ 0 ₃
1	54	0.20	0.50	4.0	0.30
2	54	0.02	2.0	4.0	0.30

Workability **Cold Working**

PRODEC 316/316L is readily formed and fabricated through a full range of cold working operations. It can be used in heading, drawing, bending, and upsetting. Any cold working operations will increase the strength and hardness of the material.

Table 11

Al ₂ O ₃	SiO ₂	CaO	MgO
0.20	0.10	0.20	0.70
0.20	0.10	0.20	0.70

Hot Working

PRODEC 316/316L can be forged in the 1700-2200°F range. For maximum corrosion resistance, forgings should be annealed at 1900°F minimum and water quenched or rapidly cooled by other means after hot working operations.

Welding

PRODEC 316/316L is readily welded by a full range of conventional welding procedures (except oxyacetylene). AWS E316L/ER316L and other low carbon filler metals with molybdenum content higher than that of the base metal should be used with PRODEC 316/316L steel.

Technical Support

Outokumpu assists users and fabricators in the selection, qualification, installation, operation, and maintenance of PRODEC 316/316L stainless steel. Technical personnel, supported by the research laboratory of Outokumpu, can draw on years of field experience with PRODEC 316/316L to help you make the technically and economically correct materials decision.

Outokumpu is prepared to discuss individual applications and to provide data and experience as a basis for selection and application of PRODEC 316/316L.

Outokumpu works closely with its distributors to ensure timely availability of PRODEC 316/316L in the forms, sizes, and quantities required by the user. For assistance with technical questions and to obtain top quality PRODEC 316/316L, call Outokumpu at 1-800-833-8703.

Information given in this brochure may be subject to alterations without notice. Care has been taken to ensure that the contents of this publication are accurate but Outokumpu and its affiliated companies do not accept responsibility for errors or for information which is found to be misleading. Suggestions for or descriptions of the end use or application of products or methods of working are for information only and Outokumpu and its affiliated companies accept no liability in respect thereof. Before using products supplied or manufactured by the company the customer should satisfy himself of their suitability. 2205 Code Plus Two is a trademark of Outokumpu Stainless, Inc.

254 SMO, 654 SMO, and PRODEC are trademarks of Outokumpu Stainless.

Outokumpu High Performance Stainless 2275 E. Half Day Road, Suite 300, Bannockburn, IL 60015 USA Tel. 1-847-317-1400 Fax 1-847-317-1404

outokumpu.com